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Abstract

A point sink sampling device immersed in a flowing bubbly liquid collects more bubbles than would be

expected on the basis of the bubble number density in the bulk fluid because the bubbles accelerate towards

the sampling device faster than does the surrounding liquid. Bubble trajectories towards the sink are de-

termined by integrating the equation of motion for the bubbles, which are assumed to be subject to pressure

forces, acceleration reaction (added mass) and (possibly) drag. The number density of bubbles in the sample

is predicted to be higher than that in the bulk fluid by a factor 2.37 in the absence of drag. This highlights

the importance of isokinetic sampling, in which the disturbance to the streamlines is minimal. As drag

increases, so bubbles tend to follow streamlines more closely and the bubble number density in the sample
approaches that in the bulk fluid.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

If a sampling tube is inserted into a bubbly flow (Fig. 1), the velocity at which fluid is with-
drawn should be as close as possible to the velocity in the bulk flow in order to minimise the
disturbance to the flow. Such isokinetic sampling has been discussed by many authors, including
Shires and Riley (1966), Rao and Duckler (1971), Yoshida et al. (1978), Zhang and Ishii (1995),
Khor et al. (1996). Here we investigate the extent to which the number density of bubbles in the
sample may differ from that in the bulk when sampling is not isokinetic and the flow is disturbed.

We consider a point sink of strength Q0 placed at the origin in unbounded fluid which flows (in
the absence of the sink) with uniform velocity U1 in the z direction. The liquid has density ql and
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viscosity l. The liquid velocity ul can be approximated by a linear combination of the uniform
velocity and the velocity due to the sink:

ul ¼ U1 � Q0rs

4pr3s
ð1Þ

¼ U1ẑz�
Q0ðrþ zÞ

4pðr2 þ z2Þ3=2
ð2Þ

where ðr; zÞ are cylindrical polar coordinates with ẑz a unit vector in the z direction, and
rs ¼ ðz2 þ r2Þ1=2 is the (spherical) radial distance from the origin. Streamlines which originate at
ðr; zÞ ¼ ðr0;�1Þ will go into the sink at the origin if

r0 < a ¼ Q0

pU1

� �1=2

: ð3Þ

There is a stagnation point at ð0; a=2Þ, as seen in the streamlines shown in Fig. 2. This potential
flow satisfies the Navier Stokes equations (Joseph and Liao, 1994), but does not, of course, satisfy
the no-slip boundary condition on the walls of the sampling tube shown in Fig. 1.

We assume that the liquid contains a small volume fraction of spherical gas bubbles of radius
R0 and volume V ¼ 4

3
pR3

0, with negligible mass. The ambient pressure is assumed sufficiently high
that any effects of gas compressibility can be neglected. Each bubble moves under the influence of
pressure forces and the acceleration reaction (added mass term). We investigate the effect of drag

Fig. 2. Streamlines for the potential flow, with a ¼ 1. The sink is at ð0; 0Þ and the stagnation point is at ð0; 1
2
Þ.
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Fig. 1. For isokinetic sampling the flow rate at D is chosen to ensure minimal disturbance of the flow at B where the

sample is taken.
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on the bubble by introducing a steady drag law. Thus unsteady drag forces are neglected, as are
the effects of buoyancy. The forces acting on bubbles have been reviewed by Magnaudet and
Eames (2000), and the analysis of the force balance presented here is similar to that of Soubiran
and Sherwood (2000).

2. The equation of motion for a bubble

The bubble moves with velocity vb. The pressure force acting on the bubble is

Fp ¼ V ql

Dlul

Dt
ð4Þ

where

Dlul

Dt
¼ oul

ot
þ ul � rul ð5Þ

is evaluated at the instantaneous position of the bubble. The added mass force (acceleration re-
action) is

Fa ¼ VCmql

Dlul

Dt

�
� dvb

dt

�
: ð6Þ

We consider here that the fluid is unbounded, so that Cm ¼ 1
2
. We approximate the drag force by

the Levich formula for steady drag on a spherical bubble (Batchelor, 1973, p. 363)

Fd ¼ 12plR0ðul � vbÞ: ð7Þ

The equation of motion for the bubble becomes

dvb

dt
¼ 3

Dlul

Dt
� 18l
R2
0ql

ðvb � ulÞ: ð8Þ

The trajectory ðrbðtÞ; zbðtÞÞ of the bubble therefore satisfies

d2rb
dt2

¼ 3Q0U1

4p

� �
3rbzb

ðr2b þ z2bÞ
5=2

� Q0

4p

� �2
6rb

ðr2b þ z2bÞ
3
� 18l
R2
0ql

drb
dt

 
þ Q0rb
4pðr2b þ z2bÞ

3=2

!
; ð9aÞ

d2zb
dt2

¼ � 3Q0U1

4p

� �
r2b � 2z2b

ðr2b þ z2bÞ
5=2

� Q0

4p

� �2
6zb

ðr2b þ z2bÞ
3

� 18l
R2
0ql

dzb
dt

 
� U1 þ Q0zb

4pðr2b þ z2bÞ
3=2

!
: ð9bÞ

We assume that far upstream of the sampling probe the bubbles move with the velocity U1 of the
liquid.

We now scale lengths by a and time by a=U1, and denote non-dimensional quantities by a tilde.
The governing Eqs. (9) become
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d2~rrb
d~tt2

¼ 9~rrb~zzb
4ð~rr2b þ ~zz2bÞ

5=2
� 3~rrb
8ð~rr2b þ ~zz2bÞ

3
�Md

d~rrb
d~tt

 
þ ~rrb
4ð~rr2b þ ~zz2bÞ

3=2

!
ð10aÞ

d2~zzb
d~tt2

¼ 3ð2~zz2b � ~rr2bÞ
4ð~rr2b þ ~zz2bÞ

5=2
� 3~zzb
8ð~rr2b þ ~zz2bÞ

3
�Md

d~zzb
d~tt

 
� 1þ ~zzb

4ð~rr2b þ ~zz2bÞ
3=2

!
ð10bÞ

where

Md ¼
18l

aqlU1

a
R0

� �2

: ð11Þ

Far upstream from the point sink, in the absence of a point sink the velocity of the bubble is

d~rrb
d~tt

;
d~zzb
d~tt

 !
¼ ð0; 1Þ ð12Þ

so that ð~rrb;~zzbÞ ¼ ð~rr0;~ttÞ. When a sink is present we may evaluate the perturbation to the trajectory.
Far upstream, if Md ¼ 0,

~rrb ¼ ~rr0 �
3~rr0
8~tt2

þOð~tt�3Þ; ~zzb ¼ ~tt � 3

4~tt
þOð~tt�2Þ ~tt 	 �1; ð13a;bÞ

with errors Oð~tt�5Þ in (10a) and Oð~tt�4Þ in (10b), leading to errors Oð~tt�3Þ in ~rrb and Oð~tt�2Þ in ~zzb
(13a,b). However, when Md > 0 the errors in expansion (13a,b) are Oð~tt�2Þ and Oð~tt�1Þ respectively.
If drag is non-zero, far from the point sink the bubble tends to move with the liquid, and we
instead take

~rrb ¼ ~rr0 �
~rr0
8~tt2

þOðM�1
d t�3Þ; ~zzb ¼ ~tt � 1

4t
þOðM�1

d t�2Þ ~tt 	 �1: ð14Þ

Thus (14) is an improvement upon (13a,b) unless Md 	 j~tt�1j. The inertia of the bubble (together
with its added mass) is only one third that of the liquid it has replaced, leading to the factor 3
difference between the leading correction terms of (13a,b) and those of (14). Computations were in
all cases started sufficiently far upstream for the differences between (13a,b) and (14) to be negligible.

3. Results

The governing equations (10) were integrated numerically by means of a NAG Runge–Kutta
scheme. The bubble was initially far upstream, with (13a,b) as initial condition when Md ¼ 0 and
(14) otherwise. It was found that ~tt ¼ �20 was sufficiently far upstream for results to be little
affected by the precise choice of initial condition.

Fig. 3 shows trajectories when Md ¼ 0. Bubbles which start upstream at ~rr0 6 rc ¼ 1:538 enter
the sink. Note that there is a stagnation point, and thus a region of high pressure, at ð0; 1

2
Þ. Liquid

slows down as it approaches the stagnation point. Bubbles are more strongly affected by the
pressure gradient than is the liquid. The bubbles not only slow down, but then subsequently
accelerate away from the stagnation point. In the absence of viscosity, once a bubble has started
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to move away from the stagnation point along a trajectory such as (e) of Fig. 3, it continues to
do so.

Fig. 4 shows bubble trajectories whenMd ¼ 0:2, for the same upstream coordinates r0 as in Fig.
3. Drag causes the bubbles to follow streamlines more closely, and only those bubbles which start
upstream at ~rr0 < rc ¼ 1:504 enter the point sink. Drag ensures that any bubbles which escape the
point sink eventually move with the fluid. This causes curvature of trajectories (d) and (e) towards
the z direction in Fig. 4.

Fig. 5 shows how the critical upstream value rc decreases as the drag Md increases. We expect
rc ! 1 as Md ! 1. All bubbles which start upstream with ~rr0 < rc are collected, whereas only

Fig. 3. Bubble trajectories, Md ¼ 0. Upstream values (a) ~rr0 ¼ 0:5, (b) ~rr0 ¼ 1:0, (c) ~rr0 ¼ 1:5, (d) ~rr0 ¼ 1:538 and (e)

~rr0 ¼ 1:6.

Fig. 4. Bubble trajectories, Md ¼ 0:2. Upstream values ~rr0 as in Fig. 3.
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those liquid streamlines which start upstream within ~rr0 < 1 enter the sampling device. If the
number density of bubbles upstream is n0, the number density of bubbles collected by the sam-
pling device will be n0r2c . Thus when Md ¼ 0 the number density of bubbles in the sample will be
too high by a factor r2c ¼ 2:37.

A real sampling device (Fig. 1) is more than just a point sink. A capillary tube (BD in Fig. 1)
takes up some of the space within the pipe downstream of the sampling point. As a result, if the
sampling withdrawal rate Q0 is correctly chosen the fluid velocity in the annulus C can be un-
affected by the fluid withdrawn at B (apart from effects such as viscous boundary layers on the
outer walls of the sampling capillary tube). In the absence of a reduced velocity in the outer flow
downstream of the sampling point, there is no adverse pressure gradient to reverse the motion of
bubbles back towards the sampling point B. Moreover, upstream of the sampling point if the
walls of the capillary tube are thin and the sampling velocity is correctly chosen there will be little
disturbance of the fluid streamlines. If the rate at which fluid is withdrawn at B is increased, the
velocity in the downstream annulus C decreases and the adverse pressure gradient will enhance the
rate at which bubbles are collected. Upstream, streamlines will converge towards the orifice and
bubbles trajectories will be affected even more than liquid streamlines. At a distance from the
entrance large compared to the radius Rs of the sampling pipe, the flow perturbation will be close
to that caused by the point-sink considered here.

The analysis has considered isolated spherical bubbles in laminar flow. Bubbles of radius R0

must inevitable deform to enter the sampling tube of radius Rs < R0, but even if the sampling tube
is larger than the bubbles the strain rate OðQ0R�3

s Þ in the neighbourhood of the entrance to the
tube is likely to cause bubble deformation, since the effects of interfacial tension are typically
weak. The neglect of bubble interactions requires the volume fraction of bubbles to be small not
only in the bulk flow, but also in the vicinity of the probe. Close to the probe the velocity of
the bubbles is higher than that of the liquid: the ratio of velocities would be

ffiffiffi
3

p
for radial flow

Fig. 5. The critical value rc such that trajectories which start upstream at ~rr0 < rc enter the point sink, as a function of

drag Md.
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towards a point sink. The increase in the bubble volume fraction close to the sampling probe is
therefore less than might be expected from the enhanced rate at which bubbles are collected.

Finally, we mention solid particles of density qs, which have much greater inertia than bubbles
of the same size. The ratio of particle inertia to that of the surrounding fluid is characterised by the
density ratio qs=ql. The response time for Stokes drag on the particle is ss ¼ 2R2

0qs=9l, during
which time, if the typical particle velocity is U , it moves a distance of order UR2

0qs=l, which may
be compared with the lengthscale a that characterises the flow field (3). Hence the ratio of the
particle inertia to viscous drag forces can be expressed in terms of a modified Stokes number
S ¼ ðR0=aÞSt where St ¼ UR0qs=l is the usual Stokes number (e.g. Koch and Hill, 2001). If the
particles are flowing in gas of density ql 	 qs, then unless the Reynolds number for motion of the
particle relative to the gas is large, the pressure force and added mass can be neglected compared
to viscous drag. The gas viscosity l is likely to be small. Unless the typical velocity U is small the
Stokes number S will be large and particle inertia dominates. Only those particles which impinge
upon the sampling tube will be collected. If the sampling tube is a cylinder of radius Rs, the rate of
collection of solid particles will be pR2

sU1 which is independent of the volumetric rate Q0 at which
gas is collected. Thus we require Q0 ¼ pR2

sU1 if the sample is to represent the number density of
particles faithfully.

If the particles are flowing in liquid, drag forces and the effect of the inertia of the continuous
phase will be higher than in gas. Investigation of this case requires numerical integration of the
equations for particle motion. These must now include particle inertia, which was unimportant for
the bubble trajectories presented above.
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